NOTE

$\mathrm{Ba}_{2} \mathrm{Zn}_{3} \mathbf{P}_{10} \mathbf{O}_{30}$, the First Example of a Decametaphosphate Ring

$\mathrm{Ba}_{2} \mathrm{Zn}_{3} \mathrm{P}_{10} \mathrm{O}_{30}$ was obtained during a systematic investigation of the condensed phosphates with two bivalent cations. It is the first metaphosphate with 10 phosphorus atoms in the ring.

Crystals were grown by dissolving BaCO_{3} and ZnCO_{3} in orthophosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, and heating this solution at $400^{\circ} \mathrm{C}$ for a few days. Their monoclinic symmetry is described by the space group $P 2 / n$ with cell constants $a=21.738(15), b=5.356(5)$, $c=10.748(8) \AA, \beta=99.65(3)^{\circ}$. There are two rings per unit cell. Indexed powder diffraction data will be given in another article (l).

The final \mathbf{R} factor attained in refining the structure was 0.041 for 2759 reflections and 206 parameters.

Figure 1

The $\left(\mathrm{P}_{10} \mathrm{O}_{30}\right)^{-10}$ ring has a twofold axis and its dimensions are about $11 \times 10 \AA$ in the $(\vec{a}, \vec{c}$) plane and $5 \AA$ along \vec{b} (Fig. 1).

Detailed geometrical features of the $\mathrm{P}_{10} \mathrm{O}_{30}$ group will be described later (2). They are similar to those observed in already known cyclophosphate $\left(\mathrm{P}_{n} \mathrm{O}_{3 n}\right)^{-n}$ anions with $n=3,4,5,6$, and 8 .
The $\mathrm{P}_{10} \mathrm{O}_{30}$ rings are linked by ZnO_{4} tetrahedra along the twofold axis, by ZnO_{8} and BaO_{9} polyhedra in a three-dimensional way. In fact, these polyhedra are sharing corners, edges, and faces, and so they form a three-dimensional framework having very large channels. Along the axes of these channels one finds linear arrays of alternating $\mathrm{P}_{10} \mathrm{O}_{30}$ rings and ZnO_{4} tetrahedra.

This new type of anion, called decametaphosphate, is also the first 10 -tetrahedra ring characterized among other condensed anions, such as silicates and germanates.

References

1. M. Bagieu-Beucher, to be published.
2. M. Bagieu-Beucher, A. Durif, and J. C. Guitel, in press.
M. Bagieu-Beucher
A. Durif
J. C. Guitel

Laboratoire de Cristallographie
Centre National de la Recherche
Scientifique
Laboratoire associé à l'USMG
166 X, 38042 Grenoble Cédex, France
Received July 7, 1981

